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Abstract

We reduce the problem of detecting the existence of an object to the problem
of computing the parity of the number of objects in question. In particular, when
given any non-empty set system, we prove that randomly restricting elements of its
ground set makes the size of the restricted set system an odd number with significant
probability. When compared to previously known reductions of this type, ours excel
in their simplicity: For graph problems, restricting elements of the ground set usually
corresponds to simple deletion and contraction operations, which can be encoded
efficiently in most problems. We find three applications of our reductions:

1. An exponential-time algorithm: We show how to decide Hamiltonicity in di-
rected n-vertex graphs with running time 1.9999n provided that the graph has
at most 1.0385n Hamiltonian cycles. We do so by reducing to the algorithm of
Björklund and Husfeldt (FOCS 2013) that computes the parity of the number
of Hamiltonian cycles in time 1.619n.

2. A new result in the framework of Cygan et al. (CCC 2012) for analyzing the
complexity of NP-hard problems under the Strong Exponential Time Hypothe-
sis: If the parity of the number of Set Covers can be determined in time 1.9999n,
then Set Cover can be decided in the same time.

3. A structural result in parameterized complexity: We define the parameterized
complexity class ⊕W[1] and prove that it is at least as hard as W[1] under
randomized fpt-reductions with bounded one-sided error; this is analogous to
the classical result NP ⊆ RP⊕P by Toda (SICOMP 1991).
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1 Introduction
A set family F with an odd number of elements is of course nonempty. In the present
paper we study randomized reductions where the opposite holds with significant prob-
ability: We reduce the decision problem of determining if |F | is non-zero to the parity
problem of determining if |F | is odd. Originally such decision-to-parity reductions were
obtained as corollaries to various “isolation lemmas,” such as the one of Valiant and
Vazirani (1986), where the reduction is to the unambiguous problem of distinguishing
between |F | = 0 and |F | = 1. Our decision-to-parity reduction is not a reduction to
the unambiguous problem, and it has a much simpler structure than existing isolation
lemmas in that it computes random restrictions of the universe. In our applications, such
restrictions simply correspond to random deletions or contractions of the edges.

Organization. In §1.1, we state the main lemma of this paper and discuss its relationship
with and consequences for probabilistic polynomial identity tests as well as various
isolation lemmas. We prove the Main Lemma in §2, and we discuss its applications for
Hamiltonicity in §3, for Set Cover in §4, and for W[1] in §5. We complete this paper in
§6 by proving that our decision-to-parity reductions are optimal in a certain black-box
model of restriction-based reductions.

1.1 Set Systems under Random Reductions
Let F denote a family of sets. We present our reductions in a general combinatorial set-
ting, but for the sake of concreteness we invite the reader to think of F as the family of all
vertex subsets forming a k-clique, or the family of all edge subsets forming a Hamiltonian
cycle. For instance, in the house graph in Fig. 1, the family {{1, 2, 3, 4, 7}, {1, 3, 4, 6, 8}}
corresponds to the Hamiltonian cycles.
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Fig. 1

Let U be the ground set of F , that is, F ⊆ 2U . A restriction is a function

ρ : U → {0, 1, ∗} .

The restricted family F �ρ consists of all sets F ∈ F that satisfy i ∈ F for all i with
ρ(i) = 1 and i /∈ F for all i with ρ(i) = 0. A random restriction is a distribution
over restrictions ρ where ρ(i) is randomly sampled for each i independently subject to
Prρ(ρ(i) = 0) = p0 and Prρ(ρ(i) = 1) = p1. We define p∗ = 1 − (p0 + p1). We are
interested in the event that the number of sets in the restricted family F �ρ is odd, and
we write this event as ⊕F �ρ.
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Lemma 1 (Main Lemma). Let F be a nonempty family of sets over a universe of
size at most n, and let each set have size at most k. Let ρ denote a random restriction
with the parameters p0, p1, and p∗.

(i) If p0 ≥ p∗, then

Pr
ρ

(
⊕F �ρ

)
≥ (1− p1)n−2k · pk∗ . (1)

(ii) If p0 < p∗, then

Pr
ρ

(
⊕F �ρ

)
≥ (1− p1)n−2k ·

(
p0
p∗

)min(k,log|F |)
· pk∗ . (2)

All of our applications are based on random restrictions with p1 = 0; in this case, the
success probabilities do not depend on the size of the underlying ground set.

Examples. Consider the graph of Fig. 1, where |U | = 8, k = 5, and |F | = 2, and
assume p1 = 0. The restriction ρ results in an odd number of Hamiltonian cycles
exactly if ρ(1) = ρ(3) = ρ(4) = ∗ and either ρ(2) = ρ(7) = ∗ or ρ(6) = ρ(8) = ∗ (but
not both). For p0 = 1

2 this happens with probability 12
256 = 3

64 , slightly better than
the bound 1

32 promised by (1). If we set p0 = 1
5 then (2) promises the better bound

Prρ(⊕F �ρ) = (4
5)5 · 1

4 = 256
3125 ≥ 0.081. For completeness, direct calculation shows that

Prρ(⊕F �ρ) = 4 · (4
5)6 · 1

5 + 2 · (4
5)5 · (1

5)2 = 18432
78125 ≥ 0.235 , so the bound is far from tight

in this example.
A simple example that attains (1) with equality is the singleton family F consisting

only of the set {1, . . . , k}. Then one easily computes Prρ(⊕F �ρ) = Prρ(ρ(1) = · · · =
ρ(k) = ∗) = (1− p0)k. For an example attaining (2) with equality, consider the family
F of sets F satisfying {1, . . . , (1− ε)k} ⊆ F ⊆ {1, . . . , k}, where 0 < ε ≤ 1

2 holds and εk
is an integer. Then |F | = 2εk. There is but one restriction ρ for which the event ⊕F �ρ
happens, namely when ρ(i) 6= 0 for all i ≤ (1 − ε)k and ρ(i) = 0 for all i > (1 − ε)k.
Thus, with p0 = ε we have

Pr
ρ

(⊕F �ρ) = (1− p0)(1−ε)kpεk0 = (1− p0)k
(

p0
1− p0

)log |F |
.

Connection with Probabilistic Polynomial Identity Tests. The Main Lemma with
p1 = 0 can be expressed in terms of polynomials over finite fields instead of restricted set
systems by considering the nonempty set system F as the nonzero polynomial

p(X1, . . . , Xn) =
∑
F∈F

∏
i∈F

Xi

in the polynomial ring GF(2)[X1, . . . , Xn]. Let x1, . . . , xn ∈ GF(2) be chosen indepen-
dently and uniformly at random. The Main Lemma implies

Pr
x1,...,xn

(
p(x1, . . . , xn) = 0

)
≤ 1− 2−k ,
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where k is the total degree of p; since p is multilinear, k corresponds to the maximum
number of variables occurring in a monomial.

Thus, our Main Lemma can be understood as a variant of the well-known probabilistic
polynomial identity test of DeMillo and Lipton (1978), Schwartz (1980), and Zippel
(1979) (cf. Arora and Barak 2009, Lemma 7.5). In its standard form, that lemma bounds
the probability by k/2, where the 2 stems from the size of the finite field GF(2); we
usually have k/2 ≥ 1 and so the bound is vacuous. Nevertheless, variants of the lemma
for small finite fields have been studied. In particular, the basic form of the Main Lemma
where p0 = 1

2 and p1 = 0 appears in Cohen and Tal (2013, Lemma 2.2) and Vassilevska
Williams et al. (2015, Lemma 2.2.). For smaller values of p0, the Main Lemma yields as
a corollary the following probabilistic polynomial identity test, which may be new and
of independent interest; it applies to sparse polynomials over GF(2).

Corollary 2. Let p be a non-zero polynomial over GF(2) in the variables X1, . . . , Xn,
with total degree deg(f) and at most 2ε deg(f) monomials. Let x1, . . . , xn ∈ {0, 1} be
sampled from the distribution where Pr(xi = 0) = ε ≤ 1

2 holds for each i independently.
Then

Pr
x1,...,xn

(
p(x1, . . . , xn) = 0

)
≤ 1− 2−H(ε) deg(f) .

Comparison to isolation lemmas based on linear equations. In their seminal paper,
Valiant and Vazirani (1986) prove an isolation lemma that can be described for non-empty
set systems F over a ground set U of size n as follows: Suppose we know s = log |F |
for some s. Then we sample a function h : {0, 1}U → {0, 1}s at random from a family
of pairwise uniform hash functions. We interpret h as mapping subsets of U to vectors
in {0, 1}s. We define the restricted family Fh=0 as

Fh=0 =
{
F ∈ F : h(F ) = (0, . . . , 0)

}
.

Valiant and Vazirani (1986) prove that Fh=0 has exactly one element with probability
at least 1

4 . Since the cardinality of F is not known, the value of s must be guessed at
random from {1, . . . , n}, and the success probability for the whole construction becomes
Ω(1/n). In particular,

Pr
h

(⊕Fh=0) ≥ Ω( 1
n) .

The procedure we just described is useful for problems that are sufficiently rich to
express the condition h(F ) = 0. In particular, the set of all affine linear functions
h : GF(2)n → GF(2)s is often used as the family of hash functions; these functions have
the form h(x) = Ax+ b for some suitable matrix A and vector b over GF(2). Thus the
condition h(F ) = 0 becomes a set of linear equations over GF(2), which can be expressed
as a polynomial-size Boolean formula – in fact most natural NP-complete problems are
able to express linear constraints with only a polynomial overhead in instance size.

In the exponential time setting, we cannot afford such polynomial blow-up and many
problems, including the satisfiability of k-CNF formulas, are not known to be able to
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efficiently express arbitrary linear constraints. Nevertheless, Calabro et al. (2003) are able
to design an isolation lemma for k-CNF satisfiability, essentially by considering sparse
linear equation systems, that is, systems where each equation depends only on k variables.
Things seem to get even worse for problems such as Set Cover, where we are unable to
efficiently express sparse linear equations. This is where our random restrictions come
into play since they are much simpler than linear equations; in terms of CNF formulas,
they correspond to adding singleton clauses like (xi) or (¬xi).
Neglecting, for a moment, the fact that we may be unable to express the necessary

constraints, let us compare the guarantees of Valiant and Vazirani (1986) and the Main
Lemma: we only achieve oddness instead of isolation, but we do so with probability 2−k
instead of Ω( 1

n) — our probability is better if n ≥ 2k.

Comparison to isolation lemmas based on minimizing weight. Another isolation
lemma for k-CNF satisfiability suitable for the exponential-time setting is due to Traxler
(2008) and is based on the isolation lemma of Mulmuley, Vazirani, and Vazirani (1987).
Their construction associates random weights w(x) ∈ {1, . . . , 2|U |} with each element in
the ground set. One then considers for each r ∈ {0, . . . , 2k|U |} the subfamily of sets of
weight exactly r, formally defined as

Fw,r =
{
F ∈ F :

∑
x∈F w(x) = r

}
.

The isolation lemma of Mulmuley, Vazirani, and Vazirani (1987) says that there is a
unique set F ∈ F of minimum weight r with probability at least 1

2 . In particular, for
this r = r(F , w) we have Prw

(
⊕Fw,r

∣∣ r = r(F , w)
)
≥ 1

2 . Since r is not known, we
sample it uniformly at random, which yields the overall success probability

Pr
w,r

(
⊕Fw,r

)
≥ Ω( 1

kn) .

The difficulty with this approach is that, when the weighted instance of, say, Set Cover
is translated back to an unweighted instance, the parameters are not preserved because
the weights are taken from a set of nonconstant size. On the other hand, the weights 0
and 1 can be expressed in many problems as simple deletions or contractions.

We can view the Main Lemma in the weight-minimization framework as follows: sample
random weights w(x) ∈ {0, 1} independently for each x such that w(x) = 0 holds with
probability p0, and define the weight of F ∈ F as

∏
x∈F w(x); by taking the logarithm,

we note that minimizing the product is identical to minimizing the sum. The Main
Lemma yields a lower bound on the probability that the number of sets with nonzero
weight is odd. For comparison with Traxler (2008), note that we only achieve oddness
instead of isolation, but we do so with probability 2−k instead of Ω( 1

kn), which is much
better when k is small.

Other parity lemmas and optimality. Not all decision-to-parity reductions are based on
an isolation procedure: Naik, Regan, and Sivakumar (1995) use a small-bias sample space
to design a randomized polynomial-time procedure that maps any Boolean formula F ,
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whose set of satisfying assignments corresponds to a set family F , to a formula F ′, whose
family of satisfying assignments F ′ is a subfamily of F ; the guarantee is that, if F is
not empty, then Pr(⊕F ′) ≥ 1

2 − ε; they achieve such an algorithm for any constant ε > 0.
The constraints in the construction of Naik, Regan, and Sivakumar (1995) are linear

equations, which we do not know how to encode into less expressive problems such as
Set Cover. On the other hand, restrictions of families often correspond to contractions
or deletions, which are typically easy to express. Nevertheless, the success probability
of Naik, Regan, and Sivakumar (1995) is much better than the one guaranteed by the
Main Lemma, and one may wonder whether this is an artifact of our proof. Alas, we
prove in §6 that this is not the case: no decision-to-parity reduction that is based on
random restrictions can have a better success probability than what is achieved by the
Main Lemma.

2 Proof of the Main Lemma
We bootstrap the main lemma from the following fine-grained variant of the DeMillo–
Lipton–Schwartz–Zippel lemma for multilinear polynomials over GF(2).

Lemma 3 (Fine-grained DeMillo–Lipton–Schwartz–Zippel).
Let f be a non-zero multilinear polynomial in the variables X1, . . . , Xn over GF(2). Let
deg(f) be the maximum degree of the polynomial and |f | be the number of monomials.
Let q0, q1 ∈ [0, 1] so that q0 + q1 = 1. In the following, we sample x = x1 . . . xn from
{0, 1}n by setting xi = 1 with probability q1 for each i independently.

(i) If q0 ≤ q1, then

Pr
x

(
f(x) = 1

)
≥
(
q0
q1

)min(deg(f),log|f |)
· qdeg(f)

1 .

(ii) If q0 ≥ q1, then

Pr
x

(
f(x) = 1

)
≥ qdeg(f)

1 .

Proof. The proof is by induction on the number n of variables. If n = 0 then f = 1, and
so the probability is equal to one.
For the induction step, suppose that n > 0. Let A,B ⊆ [n] be maximal disjoint sets

such that

f = g ·
∏
i∈A

Xi ·
∏
i∈B

(1−Xi) , (3)

where g is a polynomial in the variables Xi for i 6∈ A∪B. Since f is a non-zero polynomial,
so is g.
In the special case that g = 1, we have deg(f) = |A| + |B| and |f | = 2|B|, and so
|B| = log|f | and |A| = deg(f) − log|f |. Therefore, f(x) = 1 holds with probability
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exactly q|A|1 · q|B|0 = q
deg(f)−log|f |
1 q

log|f |
0 . Since log|f | ≤ deg(f), this is exactly what we

claimed for q0 ≤ q1. Moreover, if q0 ≥ q1, we observe that qdeg(f)
1 (q0/q1)log |f | ≥ qdeg(f)

1 .
Thus it remains to consider the case where g is not identically one. Without loss of

generality, let X1 be a variable that appears in g. Then g can be decomposed uniquely
as g = X1g1 + (1 − X1)g0 where g0 and g1 are polynomials in the variables Xi for
i 6∈ A ∪ B ∪ {1}. If g0 or g1 were identically zero, then either A or B could have been
extended by one; therefore, neither g0 nor g1 are identically zero. The decomposition
of g transfers to a decomposition f = X1f1 + (1−X1)f0 where f0 and f1 are non-zero
polynomials in the variables X2, . . . , Xn. We prepare to apply the induction hypothesis
by conditioning on the value of x1 ∈ {0, 1} as follows:

Pr
x

(
f(x) = 1

)
= q1 · Pr

x2,...,xn

(
f1(x2, . . . , xn) = 1

)
+ q0 · Pr

x2,...,xn

(
f0(x2, . . . , xn) = 1

)
Since f0 and f1 have fewer than n variables, the induction hypothesis applies. Note that
deg(f0) and deg(f1) are both at most deg(f), and |f0| and |f1| are both at most |f |.

Let us first consider the easier case q0 ≥ q1, where a simple application of the induction
hypothesis yields the claim:

Pr
x

(
f(x) = 1

)
≥ q1 · qdeg(f1)

1 + q0 · qdeg(f0)
1 ≥ (q1 + q0)qdeg(f)

1 = q
deg(f)
1 .

Now assume that q0 ≤ q1. Note that min(a′, b′) ≤ min(a, b) holds whenever a′ ≤ a and
b′ ≤ b, and that (q0/q1)c

′
≥ (q0/q1)c holds whenever c′ ≤ c. Therefore,

Pr
x

(
f(x) = 1

)
≥ q1 ·

(
q0
q1

)min(deg(f1),log|f1|)
· qdeg(f1)

1

+ q0 ·
(
q0
q1

)min(deg(f0),log|f0|)
· qdeg(f0)

1

≥
(
q0
q1

)min(deg(f),log|f |)
· qdeg(f)

1 .

This finishes the proof of the lemma. �

Let [n] = {1, . . . , n}. We define the distribution D(p0, p1, n) over the set of all restric-
tions ρ : [n] → {0, 1, ∗} as follows: For each i ∈ [n] independently, we sample ρ(i) at
random so that ρ(i) = b holds with probability exactly pb for b ∈ {0, 1, ∗} where p∗ is
defined as 1− (p0 + p1).

Lemma 1 (Main Lemma, restated). Let F be a non-empty family of subsets of [n],
and let k be the size of the largest set in F .

(i) If p0 ≥ p∗, then

Pr
ρ∼D(p0,p1,n)

(
⊕F �ρ

)
≥ (1− p1)n−2k · pk∗ .
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(ii) If p0 < p∗, then

Pr
ρ∼D(p0,p1,n)

(
⊕F �ρ

)
≥ (1− p1)n−2k ·

(
p0
p∗

)min(k,log|F |)
· pk∗ .

Proof. We define
fF =

∑
F∈F

∏
i∈F

Xi .

Moreover, for a “core” set C ⊆ {1, . . . , n}, we further define

fF ,C =
∑
F∈F
F⊇C

∏
i∈F\C

Xi .

Clearly fF ,∅ = fF , and fF ,C is a multilinear polynomial in the variables xi for i ∈ [n]\C.
For any restriction ρ, we set C = ρ−1(1). We now have∣∣∣F �ρ

∣∣∣ mod 2 = fF ,C(x) . (4)

where for all i with ρ(i) 6= 1, we let

xi =
{

0 if ρ(i) = 0, and
1 if ρ(i) = ∗ .

To see (4), first note that fF ,C(x) is equal to the parity of the set M of monomials∏
i∈I Xi of fF ,C such that xi = 1 holds for all i ∈ I. Now we establish a bijective

mapping π : F �ρ → M . Let F ∈ F �ρ. Then F ∈ F and F ⊇ C holds, and so
π(F ) :=

∏
i∈F\C Xi is a monomial of fF ,C . Moreover, all i ∈ F \ C satisfy ρ(i) = ∗,

and so xi = 1. The mapping π is clearly injective, for if F, F ′ ⊇ C and F 6= F ′, then
π(F ) 6= π(F ′). It is also surjective: Let

∏
i∈I Xi be a monomial in M and let F = I ∪C.

Since ρ(i) = ∗ holds for all i ∈ I and ρ(i) = 1 for all i ∈ C, we have F ∈ F �ρ and
π(F ) =

∏
i∈I Xi.

Using (4), we reduce to the previous lemma. For this, we first sample C ⊆ [n] by
including each i ∈ [n] in the set C independently with probability p∗. Let q0 = p0

p0+p∗
and q1 = p∗

p0+p∗ ; for each i ∈ [n] \ C independently, we next sample xi ∈ {0, 1} so that
xi = 0 holds with probability exactly q0. Note that such (C, x) stand in one-to-one
correspondence with restrictions ρ, and the resulting distribution is exactly D(p0, p1, n).
Thus we have

Pr
ρ

(
⊕F �ρ

)
= E

C
Pr
x

(
fF ,C(x) = 1

)
= E

C

(
Pr
x

(
fF ,C(x) = 1

) ∣∣∣ fF ,C 6= 0
)
· Pr
C

(
fF ,C 6= 0

)
.

Note that fF ,C has n−|C| variables, at most |F | monomials, and degree at most k. Thus
the previous lemma implies a lower bound on Prx

(
fF ,C(x) = 1

)
whenever fF ,C is not

identically zero. We condition on this event, and so it remains to provide a lower bound
on the probability that fF ,C is not identically zero for random C. Since F contains a
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set F of size k, the probability that ρ(i) = 1 holds for all i 6∈ F is at least (1 − p1)n−k.
This event implies that the polynomial is not zero. Thus, we obtain the following in the
case that p0 ≤ p∗:

Pr
ρ

(
⊕F �ρ

)
≥ (1− p1)n−k ·

(
q0
q1

)min(k,log|F |)
· qk1

= (1− p1)n−k ·
(
p0
p∗

)min(k,log|F |)
·
(

p∗
p0 + p∗

)k
= (1− p1)n−2k ·

(
p0
p∗

)min(k,log|F |)
· pk∗ .

Similarly, in the case that p0 ≥ p∗, we get:

Pr
ρ

(
⊕F �ρ

)
≥ (1− p1)n−k · qk1 = (1− p1)n−k ·

(
p∗

p0 + p∗

)k
= (1− p1)n−2k · pk∗ . �

3 Directed Hamiltonicity
The most straightforward algorithmic application of our reductions is to translate a
decision problem to its corresponding parity problem. This is useful in case a faster variant
is known for the parity version. In the regime of exponential time problems, we currently
know a single candidate for this approach: Björklund and Husfeldt (2013) recently found
an algorithm that computes the parity of the number of Hamiltonian cycles in a directed
n-vertex graph in O(1.619n) time, but we do not know how to decide Hamiltonicity in
directed graphs in time (2−Ω(1))n. We devise such an algorithm in the special case that
the number of Hamiltonian cycles is guaranteed to be small. Let H : [0, 1]→ R denote
the binary entropy function given by H(ε) = −(1− ε) log2(1− ε)− ε log2 ε .

Theorem 4. For all ε > 0, there is a randomized O(2(0.6942+H(ε))n) time algorithm
to detect a Hamiltonian cycle in a given directed n-vertex graph G with at most 2εn
Hamiltonian cycles.

In particular, if the number of Hamiltonian cycles is known to be bounded by 1.0385n,
we decide Hamiltonicity in time O(1.9999n).

Discussion and related work. The best time bound currently known for directed Hamil-
tonicity is 2n/ exp(Ω(

√
n/ logn)) due to Björklund (2012). In particular, no 1.9999n algo-

rithm is known. There are no insightful hardness arguments to account for this situation;
for instance, there is no lower bound under the Strong Exponential Time Hypothesis. We
do know an O(1.657n) time algorithm for Hamiltonicity detection in undirected graphs
(Björklund 2014) and an O(1.888n) time algorithm for bipartite directed graphs (Cygan,
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Kratsch, and Nederlof 2013). The existence of a (2− Ω(1))n algorithm for the general
case is currently an open question.

Is Theorem 4 further evidence for a (2−Ω(1))n time algorithm for directed Hamiltonic-
ity? We are undecided about this. For a counterargument, consider another problem
where a restriction of the solution set leads to a (2 − Ω(1))n time algorithm, without
making the general case seem easier: Counting the number of perfect matchings in a
bipartite 2n-vertex graph. It is not known how to solve the general problem faster than
2n/ exp(Ω(

√
n/ logn)), but when there are not too many matchings, they can be counted

in time (2− Ω(1))n (Björklund, Husfeldt, and Lyckberg 2015).
We remark that when the input graph is bipartite, we could reduce to the faster parity

algorithm of Björklund and Husfeldt (2013), which runs in time 1.5n poly(n). For this
class of graphs, our constructions imply that there is a randomized algorithm to detect
a Hamiltonian cycle in time O(2(0.5848+H(ε))n) if the input graph has at most 2εn Hamil-
tonian cycles. In particular, if the number of Hamiltonian cycles is at most O(1.0431n),
the resulting bound is better than the bound O(1.888n) of Cygan, Kratsch, and Nederlof
(2013). Similarly, for the undirected (non-bipartite) case, we can beat the O(1.657n)
bound of Björklund (2014) for the undirected case for instances with at most O(1.0024n)
cycles.
In summary, detecting a Hamiltonian cycle seems to become easier when we know

that there are few of them. Currently, this result appears to be the most interesting
application of the Main Lemma. However, it is unclear if future work on Hamiltonicity
will prove it to be a central linchpin in our final understanding, or render it completely
useless—it could still turn out that the decision problem in the general case is easier
than the parity problem.

Proof. We now prove Theorem 4. We begin with a simple corollary expressing the
second part of our Main lemma in terms of the binary entropy function.

Corollary 5. Let F be a nonempty family of sets, each of size at most k. Assume
|F | ≤ 2εk holds for some ε with 0 < ε ≤ 1

2 . Let ρ denote a random restriction with
p0 = ε and p1 = 0. Then

Pr
ρ

(⊕F �ρ) ≥ 2−H(ε)k . (5)

Proof. By (2) of the Main Lemma, we have

Pr
ρ

(⊕F �ρ) ≥ (1− ε)k
(

ε

1− ε

)εk
= 2−H(ε)k .

�

Our algorithm to reduce from Hamiltonicity to its parity version is very simple:

Algorithm H (Hamiltonicity) Given a directed graph on n vertices with arc set A, this
algorithm decides whether the graph contains a Hamiltonian cycle.
H1 (Remove arcs at random.) Construct the arc subset A′ by removing each a ∈ A

independently at random with probability p0 = log |F |/k.
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H2 (Compute parity.) Return “yes” if the algorithm of Björklund and Husfeldt (2013)
determines that the parity of the number of Hamiltonian cycles of the graph given
by A′ is odd. Otherwise return “no.”

Proof (of Theorem 4). The running time of H is dominated by the call to the algorithm
of Björklund and Husfeldt (2013), which runs in time within a polynomial factor of
1.619n ≤ 20.6942n. To compute the success probability of H, let F be the family of all
subsets of A that form a directed Hamiltonian cycle and assume that |F | ≤ 2εn for
some ε with 0 ≤ ε ≤ 1

2 . By identifying arc subsets A′ with restrictions ρ in the canonical
way, we see that F �ρ is the family of directed Hamiltonian cycles in the subgraph given
by A′. The algorithm is successful if and only if ⊕F �ρ holds. Thus, by Corollary 5 with
k = n, the success probability is at least 2−H(ε)n. Finally, we amplify this to a constant
by repeating the algorithm 2H(ε)n times. �

4 Decision-to-Parity Reductions for Set Cover and Hitting Set
For Set Cover and Hitting Set, we establish a strong connection between the parity and
decision versions, namely that computing the parity of the number of solutions cannot
be much easier than finding one.
Consider as input a family F of m subsets of some universe U with n elements. A

subfamily C ⊆ F is covering if the union of all C ∈ C equals U . The Set Cover problem
is given a set family F and a positive integer t to decide if there is a covering subfamily
with at most t sets. The problem’s parity analogue ⊕ Set Covers is to determine the
parity of the number covering subfamilies with at most t sets.
Dually, a set H ⊆ U is a hitting set if H intersects F for every F ∈ F . The Hitting

Set problem is given a set family F and a positive integer t to decide if there exists a
hitting set of size at most t. The parity analogue ⊕ Hitting Sets is to determine the
parity of the number of hitting sets of size at most t. We prove the following theorem.

Theorem 6. Let c ≥ 1.

(i) If ⊕ Set Covers can be solved in time dn · poly(n+m) for all d > c, then the same
is true for Set Cover.

(ii) If ⊕ Hittings Sets can be solved in time dm · poly(n + m) for all d > c, then the
same is true for Hitting Set.

Discussion and related work. Theorem 6 should be understood in the framework of Cy-
gan et al. (2012), where it establishes a new reduction in their network of reductions. Our
results are complementary to the alternative parameterization, with n and m exchanged
in Theorem 6, which is already known: The isolation lemma of Calabro et al. (2003) in
combination with Cygan et al. (2012) implies that if ⊕ Hitting Sets can be solved in
time dn · poly(n+m) for all d > c, then the same is true for Hitting Set.
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Proof. Let F be a family of subsets some universe U of size n. The following prepos-
terous algorithm is the core of the reduction from Set Cover to ⊕ Set Covers:

S1 (Remove sets at random.) Remove each F ∈ F with probability 1
2 .

Lemma 7. Let t and n be positive integers with t ≤ n, and let F be a family of subsets
of U of size n. If F contains a set cover of size at most t, then with probability at
least 2−t, the number of set covers of size at most t in the output of S1 is odd.

Proof. Let C be the family of set covers of size at most t, that is, the family of all subsets
C ⊆ F with |C| ≤ t and

⋃
F∈C F = U . Then the output of S1 can be viewed as a

restricted family F �ρ for a random restriction ρ with p0 = 1
2 and p1 = 0. Then F �ρ’s

family of set covers of size at most t is C �ρ. The Main Lemma applied to F yields the
claim that ⊕C �ρ holds with probability at least 2−t. �

Proof (of Theorem 6). Let (F , t) be an instance of Set Cover. S1 transforms it into a
new instance (F ′, t′) with t′ = t. Clearly if the input to S1 is a no-instance, so is its
output. Conversely, if (F , t) is a yes-instance, Lemma 7 guarantees that S1 outputs a
yes-instance (F ′, t′) with probability at least 2−t. In a second step S2, the output of S1
is fed to a hypothetical algorithm for ⊕ Set Covers. Overall this algorithm has a running
time of cn poly(n+m), but its success probability 2−t is too small.

To counteract the exponential dependency on t, we use an idea of Cygan et al. (2012,
Theorem 4.8) to preprocess the instance (F , t): Let q be any positive integer and let
(F , t) be the overall input. In a new first step S0, we add dummy sets to F that each
contain fresh elements and we increment t for each dummy set added; we stop once t/q is
an integer – note that t has increased at most by q−1, which is a constant. Next we apply
the “powering” step S1a which constructs the family F q of unions F1 ∪ · · · ∪ Fq for each
choice of q sets F1, . . . , Fq ∈ F . Set t′ = t/q ≤ n/q. Then (F q, t′) is a yes-instance if
and only if (F , t) is. S1a takes time mq = poly(m). Next we run S1 on (F q, t′) as before,
which yields an instance (F ′, t′), which we send to the assumed Set Cover algorithm
in S2. Overall, our procedure takes time cn poly(n+m) and has success probability at
least 2−t′ ≥ 2n/q. To amplify this to a constant, we repeat the procedure 2n/q times,
which leads to a running time of cn2n/q poly(n+m). In particular, 21/q → 1 as q →∞,
so in the framework of Cygan et al. (2012) the growth rate of Set Cover in terms of n
is indeed at most c. Formally, we also need to observe the following: if each set in the
family is bounded in size by k, then each set family sent as a query to the oracle has sets
of size at most qk = O(k). �

Hitting Set. We can apply the parity reduction to Hitting Set as well. This is “dual” to
the previous section, and also follows from the fact that Set Cover has an algorithm that
runs in time cn poly if and only if Hitting Set has an algorithm that runs in time cm poly.
The core of the reduction now looks like this:

P1 (Delete points at random.) For each i ∈ U with independent probability 1
2 , remove

i ∈ U from U and replace every set F ∈ F by F \ {i}.
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Theorem 8. If ⊕ Hitting Sets can be solved in time cm · poly(n+m), then Hitting Set
can be solved in time cm · poly(n+m).

5 Consequences for Parameterized Complexity
We define the parameterized complexity class ⊕W[1] in terms of its complete problem
⊕ Multicolored Cliques: This problem is given a graph G and a coloring c : V (G)→ [k]
to decide if there is an odd number of multicolored cliques, that is, cliques of size exactly k
where each color is used exactly once. Formally we treat ⊕ Multicolored Cliques as an
ordinary decision problem. We let ⊕W[1] be the class of all parameterized problems
that have an fpt-reduction to ⊕ Multicolored Clique. We recall from Flum and Grohe
(2006, Def. 2.1) that fpt-reductions are deterministic many-to-one reductions that run
in fixed-parameter tractable time and that map an instance with parameter k to an
instance with parameter at most f(k). We prove the following connection between W[1]
and ⊕W[1] as a consequence of the Main Lemma.

Theorem 9. There is a randomized fpt-reduction from Multicolored Clique to ⊕ Multi-
colored Cliques with one-sided error at most 1

2 ; errors may only occur on yes-instances.

Discussion and related work. Our motivation for Theorem 9 stems from structural
complexity: Toda’s theorem (Toda 1991) states that PH ⊆ P#P, that is, every problem
in the polynomial-time hierarchy reduces to counting satisfying assignments of Boolean
formulas. Theorem 9 aspires to be a step towards an interesting analogue of Toda’s
theorem in parameterized complexity. In particular, the first step of Toda’s proof is

NP ⊆ RP⊕P , (6)

or in words: there is a randomized polynomial-time oracle reduction from Sat to ⊕ Sat
with bounded error and which can only err on positive instances; the existence of such a
reduction follows from the isolation lemma. Using a trick that we also rely on in the proof
of Theorem 9, Toda (1991) is able to turn this reduction into a many-to-one reduction.
In terms of structural complexity, the existence of such a many-to-one reduction from
Sat to ⊕ Sat then implies

NP ⊆ RP⊕P[1] , (7)

where the notation [1] indicates that the number of queries to the ⊕P-oracle is at most
one. Theorem 9 is a natural and direct parameterized complexity analogue of (7), but
for obvious reasons we decided not to state it as W[1] ⊆ RFPT⊕W[1][1].

Montoya and Müller (2013, Theorem 8.6) prove a parameterized complexity analogue
of the isolation lemma. Implicit in their work is a W[1]-analogue of (6); more precisely,
they obtain a reduction with similar specifications as the one in Theorem 9, but with two
main differences: While their reduction guarantees uniqueness rather than just oddness,
it is only a many-to-many and not a many-to-one reduction. Nevertheless, their reduction
can be turned into a many-to-one reduction, even if many queries are made, as follows:
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Suppose their reduction outputs a sequence G1, . . . , Gt of queries to k-Clique such that
at least one of them has exactly one clique of size k. Then we can take a disjoint union of
a random subset of them: Pick a random set S ⊆ {1, . . . , t} and compute G′ =

⋃̇
i∈SGi.

By a standard argument, we observe that the probability that G′ has an odd number of
k-cliques is exactly 1

2 . Hence the contribution of our work in the ⊕W[1]-setting lies more
in the fact that our reduction is very simple, whereas the one of Montoya and Müller
(2013, Theorem 8.7) is more complex.

We remark that Theorem 9 reveals a body of algorithmic open problems, the most
intriguing of which, perhaps, is the question whether ⊕ k-Paths is fixed-parameter
tractable or ⊕W[1]-hard. Note that ⊕ k-Matchings is polynomial-time solvable by
a reduction to the determinant, which is established using a standard interpolation
argument in the matching polynomial.

Proof. We now prove Theorem 9. In the proof, we apply the Main Lemma with p0 = 1
2

to the family of all multicolored cliques. The success probability of this application is
≥ 2−k, which we amplify to a constant by repeating the reduction t = O(2k) times
independently. To combine the various independent trials back into a single instance, we
use a trick also used by Toda (1991), which we restate here for completeness.

Lemma 10 (OR-composition for ⊕ Multicolored Cliques).
There is a polynomial-time algorithm A with the following specification: for all graphs
G1, . . . , Gt with k vertex colors each, the algorithm produces a graph G′ = A(G1, . . . , Gt; k)
with k′ = tk colors such that G′ has an odd number of multicolored cliques if and only if
at least one Gi has an odd number of multicolored cliques.

Proof. Let G1, . . . , Gt and k be given as input. Let k′ = tk. First we add a fresh
disjoint multicolored clique of size k to each graph to obtain the graphs G+1

1 , . . . , G+1
t .

We assume that all k′ = tk colors are distinct. Now we compute the “clique sum” of
the t graphs, that is, we compute the graph H constructed as follows: Starting from
the disjoint union of the graphs, we add all edges between vertices from distinct graphs.
Finally, the reduction produces the output G′ = H+1, that is, H where we added a fresh
disjoint multicolored clique of size k′. Let Ni be the number of multicolored cliques in
Gi. It is easy to see that the number of multicolored cliques in G′ is 1 +

∏k
i=1(Ni + 1).

In particular, this number is odd if and only if at least one Ni is odd, which proves the
correctness of the reduction. �

We are ready to prove the theorem.

Proof (of Theorem 9). Let (G, k, c) be an instance of Multicolored Clique. Let F =
{S ⊆ V (G) : S is a multicolored clique }. Then Pr(⊕F �ρ) ≥ 2−k holds by the Main
Lemma. This fact motivates the following reduction: For each vertex independently, we
flip a coin and remove it with probability 1

2 . If the input does not contain a multicolored
clique, the output does not contain one either. If the input does contain a multicol-
ored clique, then, with probability at least 2−k, the output contains an odd number of
multicolored cliques. Repeating this reduction t = O(2k) times independently produces
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graphs G1, . . . , Gt, which we combine into a single instance G′ using Lemma 10. Overall,
the reduction takes time 2k poly(n) and the parameter of the output is t · k = f(k), so
this is an fpt-reduction. It remains to prove that the error probability of the overall
reduction is bounded by a constant: If G does not have a multicolored clique, then, with
probability one over the random choices of the reduction, the output G′ has an even
number of multicolored cliques. On the other hand, if G has a multicolored clique, then,
with probability at most

(
1 − 2−k

)t ≤ exp
(
−2−k · t

)
≤ 1

2 , the output G′ has an even
number of multicolored cliques. �

Inspired by Theorem 9, we stumbled on a body of algorithmic open problems, the
most intriguing of which, perhaps, is the question whether ⊕ k-Paths is fixed-parameter
tractable or ⊕W[1]-hard.

6 Black-box Optimality of the Main Lemma
We consider a framework similar to Dell et al. (2013), who provide evidence that Valiant
and Vazirani (1986) achieves the best possible success probability – they prove that every
isolation procedure that acts in a certain black-box model can have success probability
at most O( 1

n). Here, we prove that the probability guarantees of Lemma 1 cannot be
significantly improved by exchanging the distribution D(p0, p1, n) with p0 = min{1

2 ,
c
k}

and p1 = 0 for any other distribution D over the set of restrictions ρ : [n]→ {0, ∗}.

Lemma 11. For all positive integers c, k and n with c ≤ k ≤ n and all distributions D
over restrictions ρ : [n] → {0, ∗}, there is a non-empty family F of cost at most c and
with sets of size at most k such that:

Pr
ρ∼D

(
⊕F �ρ

)
≤ q .=


2−k if c

k = 1 ,
2−k · 2 if 1

2 ≤
c
k < 1 ,

2−H(c/k)k ·
√

8k if 0 ≤ c
k ≤

1
2 .

This lemma establishes the optimality of Lemma 1 in a “black-box” model of restriction-
based decision-to-parity reductions, in which the restriction computed by the reduction
may only depend on the given parameters c, k, and n, and not on any other aspect of
the set family F .

Proof. The claim is that the following quantity is at most q:

sup
D

inf
F

Pr
ρ∼D

(
⊕F �ρ

)
= inf
D′

sup
ρ

Pr
F∼D′

(
⊕F �ρ

)
.

The equality follows from the minimax theorem. We define a suitable distribution D′
on non-empty families F ⊆

([n]
≤k
)
to bound the right-hand side. The distribution D′

chooses uniformly at random a set S ⊆ [k] of size at least s .= k − c. The distribution
produces the family F that consists of all sets S′ that satisfy S ⊆ S′ ⊆ [k]. Note that
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all families F obtained in this fashion have cost at most c because they are extremal
families whose set of irrelevant vertices is S, which is of size c.

We claim that every function ρ : [n]→ {0, ∗} satisfies

Pr
F∼D′

(
⊕F �ρ

)
≤ q .

Since D′ only outputs families over [k], we can assume without loss of generality that
n = k. Furthermore, D′ only outputs families F that are upwards closed over [k] and
that have a unique minimal element S. For such families, ⊕F �ρ holds if and only if
ρ(i) = 0 holds for all i ∈ S and ρ(i) = ∗ for all i ∈ S. Let r be the number of elements
i ∈ [k] for which ρ(i) = ∗. If r < s, then the probability is zero and q ≥ 0 is an upper
bound. Otherwise there is exactly one choice of S so that the event happens, and we
have

Pr
F∼D′

(
⊕F �ρ

)
=
(

k∑
i=s

(
k

i

))−1

.

If s = 0, this probability equals 2−k. If s ≤ k
2 , the probability is at most

(
2k/2

)−1
= 2·2−k.

Finally if s ≥ k
2 , we use the fact that(
k

≥ s

)
=
(
k

≤ c

)
≥ 1√

8c(1− c/k)
· 2H(c/k)·k ≥ 1√

8k
· 2H(c/k)k .

The first inequality is a standard lower bound on the size of the Hamming ball of
radius c, see Ash (1965, p. 121). Thus we can bound the probability from above by(
2H(c/k)k/

√
8k
)−1 = 2−H(c/k)k ·

√
8k. This finishes the proof of the lemma. �
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